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Stable elliptical vortices in a circular disk

Peilong Chen*
Department of Physics and Center for Complex Systems, National Central University, Chungli 320, Taiwan

~Received 23 November 1998!

We show that large elliptical vortices in a finite disk are stable in a two-dimensional~2D! ideal fluid ~this
also applies to a column of quasi-2D non-neutral plasma in an axial magnetic field!. The stability is established
by comparison between the energy of elliptical and symmetrical states to satisfy a sufficient condition, without
dynamical eigenanalysis. Analytical small ellipticity expansion of system energy and exact numerical values
for arbitrary ellipticity are both obtained for uniform vortices. An approximating calculation is presented for
general smooth vortices. Numerical simulations of the 2D Euler equation are also performed. The simulations
not only confirm the sufficient condition, but also show that the stability persists to smaller vortex sizes. The
reason why decayingl 52 modes were obtained by Briggs, Daugherty, and Levy@Phys. Fluids13, 421~1970!#
using eigenanalysis is also discussed.@S1063-651X~99!08908-4#

PACS number~s!: 47.15.Ki, 47.20.2k, 52.25.Wz
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I. INTRODUCTION

The two-dimensional~2D! incompressible Euler equatio

]v

]t
1~u•“ !v50 ~1!

not only describes an incompressible 2D ideal fluid, but a
governs the behavior of a long non-neutral plasma colu
confined by a uniform axial magnetic field@1#. Here,u(x,y)
is the 2D velocity field andv(r ) the vorticity field,v[(“
3u)• ẑ. The incompressibility condition,“•u50, can be au-
tomatically satisfied by defining the stream functionf such
as u5(]f/]y,2]f/]x). The stream function and vorticity
are related by the Poisson equation“2f52v. In a pure
electron plasma,v corresponds to the electron density andf
to the electrical potential.

Stability problems of coherent vortex states in this syst
have long been interesting and important questions. In a
space, there exist exact nonlinear elliptical~Kirchoff! uni-
form vorticity solutions @2#. In a cylindrical geometry,
Briggs, Daugherty, and Levy@3# showed that, using dynami
cal eigenanalysis, resonance between fluid elements
wave modes will lead to damping ofl>2 diocotron modes.
Here,l denotes the mode number when the perturbation
symmetric stream function is written asf l(r )exp@i(Vt2lu)#.
By solving the initial value problem of linearized dynamic
equations and properly treating analytical continuation in
complexV plane, they obtained a formulation for the com
plex eigenvalueV. In particular, for a vorticity distribution
very close to a step function@i.e., v(r ,r 0)51 and v(r
.r 0)50# but with negative radial derivative at all places,V
with a positive imaginary part is calculated forl>2, leading
to decaying normal modes.

Experimental observations of decayingl 52 modes have
been performed by Pillai and Gould@4# in a pure electron
plasma. Exponential decay rates were obtained, as we
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the observation of fluid trapping in the diocotron mode
large amplitudes. In another experiment with a pure elect
plasma@5#, beat-wave resonance damping~transitions from
high l modes to lowl modes! was observed to be the dom
nant vortex symmetrization mechanism.

A stability argument based on global constraints has a
been applied to the 2D vortex system@6#. The logic of this
analysis is to show that a functionalW@v(r )# which is con-
served by the 2D Euler equation is a maximum at a particu
v(r ) against all other states that are accessible under inc
pressible flows. At this maximum, no further changes
v(r ) are possible and the state is then stable. For exam
Davidson and Lund@7# showed that a state in a cylindrica
geometry following a relation v(r )5v„f(r )… and
]v(f)/]f>0 is nonlinearly stable@8#. In another example
O’Neil and Smith@9# demonstrated that an off-center cohe
ent vortex~linearly an l 51 perturbation! in a disk is also
stable. However, no results on the stability of anl 52 mode
using this method have been given in the literature.

Thermal equilibrium has been studied in 2D ideal flui
@10#. Since the coarse-grained entropy will not decrease
to the dynamical vorticity mixing, it is proposed that th
system will reach a maximum coarse-grained entropy stat
long time. Mean field equations governing these states h
been derived@10#, and solutions in some situations were o
tained@11#. Once a mean-field equilibrium state is obtaine
its stability can be assured by showing a positive sec
derivative of entropy against all possible perturbations. T
test of stability is similar to the method mentioned in t
preceding paragraph.

In this paper we will establish the stability of a larg
elliptical vortex in a disk~comparing to the disk size! against
relaxation to a symmetrical state using neither of the ab
two methods with eigenanalysis and global maximum. T
apparent contradiction between these results and those
tained by Briggs, Daugherty, and Levy@3# will be indicated
due to the limitation of monotonic decreasing profiles in th
paper. We will first deduce a stable sufficient condition fro
the conservation law of the Euler equation and the prope
of dynamical vorticity mixing. The energy of uniform vor
ticity will then be calculated~analytically at the small ellip-
1748 © 1999 The American Physical Society
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PRE 60 1749STABLE ELLIPTICAL VORTICES IN A CIRCULAR DISK
ticity limit and numerically for general cases! and the vorti-
ces larger than a critical radius are shown to be stable f
the comparison of energy. Testing the condition does
involve evaluating second derivatives, actually not ev
finding any equilibrium states. For smoothly distributed
liptical vortices, an approximating method is used and
results also suggest the existence of stable nonuniform
lipses. The robustness of these results under a small visc
is also discussed. We further perform numerical simulati
of the 2D Euler equation to test our predictions. Simulatio
not only confirm the sufficient condition, but also show th
elliptical vortices are stable to much lower radii.

II. THE STABILITY CONDITION

The stability condition used here can be summarized
follows. For an elliptical vortex at the center of a unit disk,
all possible symmetrical distributions obeying the glob
constraints~except energy! required by the Euler equatio
have energy less than that of the initial ellipse, this ellip
will never evolve to a symmetrical state.

Specifically, let us first consider a uniform-vorticity ellip
tical vortex with unit vorticity level sitting at the disk cente
~Generalization to nonuniform vortices will be discuss
later.! Now consider its possible dynamics toward an ax
symmetrical vortex. This will be a state with a linearl 52
diocotron mode if the vortex has an infinitesimal ellipticit

The Euler equation conserves the total vorticityQ, angu-
lar momentumM, and energyE of the initial ellipse ~the
global constraints!, which are given by

Q5E v~r !dr , M5E r 2v~r !dr ,

Ee5
1

2E f~r !v~r !dr .

Furthermore, dynamical vorticity mixing ensures that t
vorticity level of the resulting symmetrical vortex will neve
exceed one~the original uniform value!. Under this restric-
tion and givenQ andM from the initial ellipse, there must b
a maximum energy state with its energy denoted asEs
among all possible symmetrical distributions. Requiring co
servation of energy, the condition then immediately follow
Ee,Es is necessary for the ellipse to ever evolve to a sy
metrical vortex;Ee.Es is the sufficient conditionfor the
ellipsenot evolving to a symmetrical state. Applied to infin
tesimal ellipticity, thel 52 diocotron mode will not decay
whenEe.Es .

For general nonuniform vortices, first let us defineG(s)
as the area covered by vorticity larger and equal tos,

G~s![E
V
s„v~r !2s…dr ,

with s(s) the usual step function. Now dynamical vortici
mixing requires the inequality betweenGe(s) of the initial
ellipse and Gs(s) of the evolved symmetrical profile
Ge(s)>Gs(s). Note that in the special case of uniform vo
ticity, this inequality is simplified to the previous stateme
about the vorticity not exceeding 1.
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It should be noted here that this condition only attempts
exclude symmetrical states from possible evolutions, a li
tation purely physically motivated. For example, it see
unlikely that an ellipse at the disk center will break the sy
metry and relax to an off-center vortex, although we belie
that the energy stability condition will not prohibit this dy
namics. This conjecture~not decaying to off-center states! is
consistent with numerical simulations in the tested param
ranges which will be discussed in Sec. VI.

III. SMALL ELLIPTICITY FOR UNIFORM VORTICES

Naturally we first want to examine the energy of unifor
elliptical vortices, because of their large energy giving a b
ter chance to satisfy the stability condition and the poss
benefit on calculation due to their uniformness. We tak
uniform elliptical vortex as a vorticity distributionve(r ) in
the polar coordinate (r ,u),

ve~r ,u;r 0 ,e!512s„r 2r 0~11e cos 2u!…, ~2!

with s(x) again the step function. The parameterr 0 defines a
base vortex size ande its ellipticity. The energy of this vor-
tex in a unit disk can be written down using the Green fun
tion in a disk for the Poisson equation,“2G(r ;r 8)52d(r
2r 8), with zero boundary condition atr 51. Using an
opposite-charged image charge sitting atr 9[(1/r 8,u8), the
Green function can be written asG(r ;r 8)521/2p(lnur
2r 8u2 lnur2r 9u2 ln r8). The last term lnr8 is needed to give
zero potential atr 51. The energy of the uniform elliptica
vortex is then

Ee~r 0 ,e!5
1

2E f~r !v~r !dr

5
1

2E0

2p

duE
0

r 0(11e cos 2u)

rdr

3E
0

2p

du8E
0

r 0(11e cos 2u8)
r 8dr8G~r ;r 8!

5E01E
0

2p

duE
r 0

r 0(11e cos 2u)

rdrf0~r ;r 0!

1
1

2E0

2p

duE
r 0

r 0(11e cos 2u)

rdr E
0

2p

du8

3E
r 0

r 0(11e cos 2u8)
r 8dr8G~r ;r 8!. ~3!

We separateEe into three terms in the preceding equatio
Here f0(r ;r 0) is the stream function of a uniform circula
vortex with radius r 0 , (1/r )(d/dr)„r (df0 /dr)…52v0 ,
v0(r ;r 0)512s(r 2r 0), andE0 its corresponding energy,

E05
1

2E f0~r ;r 0!v0~r ;r 0!2prdr 5pr 0
4S 2

1

4
ln r 01

1

16D .

We know of no way to integrate Eq.~3! analytically. How-
ever, in this section we will calculate analytically the leadi
term in a smalle expansion ofEe(r 0 ,e), which is directly
related to the linear stability of anl 52 diocotron mode, and
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1750 PRE 60PEILONG CHEN
in the next section we will present exact numerical results
Ee(r 0 ,e) with arbitrary e. Since the vortex is defined b
r 0(11e cos 2u), the lowest order dependence one must be
e2. Correct to the order ofe2, the second term in Eq.~3! is
quickly found to be

E
0

2p1

2
@r 0f08~r 0 ;r 0!1f0~r 0 ;r 0!#r 0

2e2 cos2 2udu

52
1

4
pr 0

4~11 ln r 0!e2.

Here the prime denotes the derivative respected tor. Evalu-
ation of the third term in Eq.~3! is more difficult. Again
correct to the order ofe2, the integration becomes

1

2
r 0

4e2E
0

2p

duE
0

2p

du8 cos 2u cos 2u8G~r 0 ,u;r 0 ,u8!.

Using the Green function and changing to new variableu
[u1u8 andv[u2u8, after some algebra, we reach

1

8
r 0

4e2Fp1E
0

2p

ln~a2cosv !cos 2vdvG[I a , ~4!

with a[ 1
2 (r 0

211/r 0
2)>1. The integration I 1[*0

2pln(1
2cosv)cos 2vdv52p has also been used in reaching E
~4!.

The integration in Eq.~4! is computed by first integrating
]I a /]a, and then usingI 1 to determine the constant arisin
from integration ofa. Eventually Eq.~4! is found to be
1
8 pr 0

4(12r 0
4)e2, and the energy of the elliptical vortex be

comes

Ee~r 0 ,e!5E01
1

4
pr 0

4S 2
1

2
r 0

42
1

2
2 ln r 0D e21O~e4!.

~5!

The energyEe(r 0 ,e) is now to be compared with th
energyEs of the maximum-energy symmetrical state wi
the same values of total vorticityQ and angular momentum
M. Its vorticity must also be equal to or less than 1. To s
what this state is, first it is favorable to have all the vortic
stay together, i.e., a uniform unit-valued circular vortex w
radius r s5(Q/p)1/2, to gain as much as energy. Howeve
this circular vortex has a fixed angular momentum1

2 pr s
4 ,

and the uniform ellipse always has a larger value. To sat
the requirement of bothQ and M, as well as achieving a
maximum energy, the vorticity distributionvs(r ) will be

vs~r !5H 1 for 0,r ,a and b,r ,1

0 for a,r ,b.
~6!

Herea andb depend onQ andM, which are determined by
r 0 ande. In this profile, a certain amount of vorticity is pu
as far away from center as possible, i.e., at the disk bou
ary, to account for the excess angular momentum, an
maximum amount of vorticity is left to concentrate at t
center to acquire a maximum energy@12#. Here we see how
the system size comes into play in a delicate manner.
small e, a5r 0@11 1

4 (123r 0
2/12r 0

2)e2# and b512 1
2 (r 0

4/1
f

.

e

,

fy

d-
a

t

2r 0
2)e2, and the energyEs is expanded as~it involves only

straightforward algebra to solvefs and then integrateEs)

Es5E02
1

4
pr 0

4
123r 0

2

12r 0
2 ln r 0e21O~e4!.

Now we obtain the energy difference betweenEe andEs as

Ee2Es5
p

4
r 0

4S 2
1

2
r 0

42
1

2
2

2r 0
2

12r 0
2 ln r 0D e21O~e4!.

Evaluation of thee2 term reveals that there is a critical valu
of r 0 at r c50.586 such thatEe,Es for r 0,r c andEe.Es
for r 0.r c .

So applying the energy condition, this indicates that
l 52 mode perturbation of a uniform circular vortex in
finite disk will not decay if the vortex is large enough~larger
than 0.586 times the disk radius!. This result seems to con
tradict that of Briggs, Daugherty, and Levy@3#, where de-
caying modes were calculated from eigenanalysis for al
>2 modes of a circular vortex with a smooth profile ve
close tov0(r ;r 0) ~a step atr 0) but with negativev8(r ) at all
r. The resolution is that in the calculation of Briggs, Daug
erty, and Levy, the symmetrical vortex is assumed a
monotonic decreasing function ofr. This seems a reasonab
and harmless condition. However, as Eq.~6! shows, this con-
dition is very restrictive and always violated by uniform e
lipses and hence their results no longer apply.

IV. UNIFORM VORTICES WITH ARBITRARY
ELLIPTICITY

In this section we treat general ellipticity cases by co
puting numerically the energy of uniform vortices defined
Eq. ~2! with arbitrary e. Let us first consider the possibl
effects at a large ellipticity. Whene increases at a fixedr 0 in
Eq. ~2!, the energy will decrease at the same time the ang
momentum rises. Larger angular momentum also results
smaller energies of the corresponding symmetrical vortex
more vorticity will stay outside. Since both energy are d
creasing, we cannot tell before the calculation of exact val
whether a larger ellipticity will make the energy conditio
more easily satisfied or not.

To numerically calculateEe(r 0 ,e) of uniform elliptical
vortices with arbitrarye, we use another form of the Gree
function since that using image charges in the preceding
tion has logarithmic functions and is not easy to handle
merically. The Green function is now written as a summat
of Fourier components in the azimuthal direction,

G~r ;r 8!5 (
m50

`

gm~r ;r 8!cos@m~u2u8!#,

with gm functions of bothr 6m and r 86m. The energy now
becomes a summation onm of four-dimensional (r ,u,r 8,u8)
integrals. The integration onr and r 8 can be carried out
analytically and the energy simplifies to a summation
double integrals onu and u8. The integrals are then calcu
lated numerically, and results are checked to conform to
~5! at smalle.
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PRE 60 1751STABLE ELLIPTICAL VORTICES IN A CIRCULAR DISK
The exact value ofEe(r 0 ,e) now enables us to establis
the stability of finite ellipticity at uniform vorticity. In Fig. 1
of the r 0-e plane, we plot a thick line indicating the positio
whereEe5Es . ~Although complicated, againEs with arbi-
trary e can be written down analytically from straightforwa
algebra.! To the right of the line,Ee.Es and an elliptical
vortex will never relax to a symmetrical vortex. The cur
crossese50 at r 050.586, the value we have obtained fro
the smalle expansion. Ase is increased, the critical radiu
whereEe5Es becomes smaller, indicating a stronger effe
from increasing angular momentum than decreasing ene
To the left, the present analysis only says that the decay
symmetric state is allowed, but its occurrence is not impli

It should be emphasized here that we have proved tha
ellipse defined by Eq.~2! will not decay to a symmetrica
state if r 0.r c . It is very likely that dynamically it will un-
dergo adjustment and reach an elliptical-like steady state.
cannot say about its exact distribution. It probably should
a state described byv(r )5v@f(r )1Vr 2#, with 2V giving
the rigid body rotation frequency around the disk cent
Given a particular assumption on this functional dependen
an exact distribution can then be computed. One examp
the mean field equilibrium@10#. However, whether and whe
the system will reach the prediction from this maximum
entropy principle~thermal equilibrium! is still not very clear
@14#.

We should have some discussions here about the effe
viscosity, which is always present in real physical situatio
on the elliptical vortices. Ignoring the issues of all oth
quantities, the system energy will gradually decrease du
the viscous dissipation and an original stable ellipse with
energy larger thanEs could hence relax to a symmetric
state after its energy falls belowEs . However, the finite
difference between the initialEe and the symmetricalEs
makes this happen in a viscous time scale which is goin

FIG. 1. The vortex size and ellipticity space. The thick line
the stable critical radius for uniform vortices. The thin lines are
smooth vortices withc5100, 30, and 15, and calculated by co
servingZ4. In the inset, crosses represent relaxations to ellipt
states in simulations, and circles to symmetrical states.
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be very large at a small viscosity comparing to the time sc
of inviscid processes. What we are interested in here is
dynamical behaviors in these rapid inviscid processes
the presence of a small viscosity should not have large
fects. This separation of time scale is well documented
various experiments and simulations@13# and could also be
seen in our simulations~Sec. VI!.

V. NONUNIFORM VORTICITY ELLIPSES

In the previous sections the energy of both uniform ell
tical and symmetrical vortices is calculated to obtain t
stable critical radii. We now want to discuss elliptical vor
ces with smoothly distributed vorticity. Consider the situ
tion when the edge of a uniform vortex becomes smea
the energy should change gradually~not discrete jump! with
the degree of ‘‘smoothness.’’ Thus we should be able to
that smoothly distributed ellipses close to uniform vortic
still have stable critical radii. To quantitatively compute th
critical radii now, however, is not easy, and it is not cle
whether smooth vortices far away from uniform could r
main stable. The energy of nonuniform, smoothly distribu
ellipses ~which we will define as some particular distribu
tions! is actually easier to compute numerically than the u
form cases by using a two-dimensional grid with enough g
points. However, the energy of the corresponding maximu
energy symmetrical profiles is very difficult to obtain, a
there is this functional constraintG(s). Hence in this section
we will only present an approximating method to test t
stability condition. The purpose of this calculation is then
demonstrate that there should still be stable smooth ellipt
vortices, not to obtain exact values of the critical radii.

The maximum-energy symmetrical profiles now shou
have the sameG(s) as the initial ellipse. In real implemen
tation, we can require the quantitiesZn ,n51,2,3, . . . , de-
fined by

Zn[E
V
vn~r !dr ,

to be conserved. In the special case of uniform ellipses,
symmetrical states are also uniform, as we have done in
previous sections. For the general case, however, it beco
a highly nontrivial task to find this maximum-energy state

We use the smooth elliptical vortices defined in the po
coordinate by,

v~r !5
1

11exp$c@r 2r 0~11e cos 2u!#%
. ~7!

Here againr 0 gives a base vortex size,e its ellipticity @cf.
Eq. ~2!#, andc the smoothness near the edge. In Fig. 2,
show v(r ;r 050.5,e50) with three different values ofc
~100, 30, 15!.

The energy of these vortices is calculated using a po
coordinate grid inside a unit circle. The Poisson equati
“

2c52v, is solved by Fourier expansion in the azimuth
direction. Radial equations are thus decoupled for differ
Fourier modes and they are solved by a fourth-order fin
difference method. Calculations in various numbers of g

r

l



v

he

a

ca
.

t
e

s

at
-
ws.
at

ity
gly

ved
he
by

e

ted
rge
ni-
if-

-

ot
in
se

re-
o-
to
the

e

nd
all

.
our

en-
is

ex-
rm
.

r
d
m-
as
tes

ts at
lve
his
ns
r-

1752 PRE 60PEILONG CHEN
points are done to make sure enough accuracy is achie
That usually means up to the grid of 102431024.

We then use the following distribution to approximate t
corresponding symmetrical state:

v~r !5
1

11exp@c8~r 2a!#
1

1

11exp@c8~b2r !#
. ~8!

This form is motivated by Eq.~6! with additional smoothing
controlled byc8. With three parameters (a,b,c8), this equa-
tion can satisfy, besidesQ andM, only a particular choice of
Zn from the initial elliptical vortex, as oppose to allZn as
required by the exact stability condition. So results thus c
culated should be treated cautiously.

Nevertheless, in Fig. 3 we show the calculated criti
radii for c5100 with several differentZn as the constraint
The curves are again obtained by comparison between
energy of states from Eqs.~7! and~8! and mark where thes
two energy are equal. Although different choices ofZn give
different curves of critical radii, we believe they nonethele

FIG. 2. Plot of vorticity distribution Eq.~7! with r 050.5, e
50, and three different values ofc.

FIG. 3. Critical radii for smooth vortices withc5100 and using
different Zn as the constraints.
ed.

l-

l

he

s

hint at the existence of critical radii for stable ellipses
some places. Especially at largee, they are almost approach
ing a single curve. The reason we believe this is as follo
A significant portion of the increased angular momentum
small e should be accounted for by adjusting the vortic
distribution near the edge and this adjustment is stron
affected by the particular choice of constraintZn . Hence
different critical radii in Fig. 3 at smalle. However, at large
e, most of the excess angular momentum must be achie
by putting enough vorticity at the disk boundary, as in t
previous uniform case. The adaption is largely determined
Q andM, leading to a single curve for differentZn at largee.

In Fig. 1, we plot three additional thin lines marking th
critical radii calculated forc equal to 100, 30, and 15, with
Z4 as the choice of constraint. These thin lines calcula
from the above approximation we believe suggest that la
smooth elliptical vortices are also stable, like the stable u
form ellipses we have proven in the previous sections. D
ferent choices ofZn gives qualitatively similar results. Fi
nally, we note that atc515 the behavior very close toe
50 seems to indicate that linear elliptical vortices will n
satisfy the stability condition. However, we should bear
mind the approximating nature of the calculations for the
thin lines.

VI. NUMERICAL SIMULATIONS

We have performed numerical simulations to test our p
dictions. Simulations of the Euler equation in the polar c
ordinate have the difficulty of singularity at the origin due
vanishing grid spacing. To avoid this singularity, we use
functions

x5mA12z2/2,

y5zA12m2/2,

mapping a unit disk in thex-y plane to a square in them-z
plane with 21<m<1 and 21<z<1. The simulation is
then done in them-z plane with a Cartesian coordinate. Th
resolution is mostly 2563256, with a few 5123512 runs to
test convergence. By avoiding the polar coordinate a
hence the singularity at the origin, we need only a very sm
numerical viscosity term,n“2v, to stabilize the simulation
The viscous time scale hence becomes very large and
results of inviscid relaxation behaviors can then be indep
dent of the viscosity. The second-order finite difference
used for spatial derivatives. Temporally the second-order
plicit Adams-Bashford scheme is used for the nonlinear te
and the fully implicit scheme is used for the viscous term

Distributions defined by Eq.~7! with c530 are used as
our initial conditions. For an initial ellipse with particula
values ofr 0 and e, we run simulations to a long time an
determine whether their final states are elliptical or sy
metrical. The results are plotted in the inset of Fig. 1
symbols, where crosses indicate relaxation to elliptical sta
and solid circles to symmetrical states. There are no resul
very smalle as very high resolutions are needed to reso
differences between elliptical major and minor axes at t
limit. In the figure we see the confirmation of the predictio
from the stability condition, namely the stable elliptical vo
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PRE 60 1753STABLE ELLIPTICAL VORTICES IN A CIRCULAR DISK
tices with large vortex sizes. We note that no relaxations
off-center vortices have happened.

The simulations also show that ellipses are actually sta
to lower radii. This can be reasonably explained by the
namical behavior of the ellipses observed in the simulatio
Generically, an initial ellipse will shed some vorticity in th
form of vorticity filaments toward the disk boundary and t
center vortex either reaches a distribution with a smaller
lipticity or becomes symmetric. However, these filame
seldom really reach the disk boundary, as opposed to
extreme situation at the calculation of the energy of
maximum-energy symmetrical state. In other words, th
filaments do not carry away the maximum possible angu
momentum, leading to elliptical vortices at the center.

VII. SUMMARY

In conclusion, we have shown that, from the requirem
of vorticity mixing in dynamical evolution and energy con
in
.
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le
-
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l-
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he
e
e
r

t

servation, large elliptical vortices in a finite disk will rema
stable. At the infinitesimal ellipticity limit, this indicate
stablel 52 diocotron modes for large vortices. The critic
radii for uniform vortices is rigorously computed. The exi
tence of stable smooth vortices are also suggested by an
proximating calculation. Numerical simulations not on
confirmed these results, but also show that elliptical sta
are actually stable to a smaller size. The contradiction to
current general idea of decayingl 52 modes is also indicated
due to the incompleteness of considering only monoto
decreasing vorticity by Briggs, Daugherty, and Levy.
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