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Stable elliptical vortices in a circular disk
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We show that large elliptical vortices in a finite disk are stable in a two-dimens{@®alideal fluid (this
also applies to a column of quasi-2D non-neutral plasma in an axial magnetjc Tib&stability is established
by comparison between the energy of elliptical and symmetrical states to satisfy a sufficient condition, without
dynamical eigenanalysis. Analytical small ellipticity expansion of system energy and exact numerical values
for arbitrary ellipticity are both obtained for uniform vortices. An approximating calculation is presented for
general smooth vortices. Numerical simulations of the 2D Euler equation are also performed. The simulations
not only confirm the sufficient condition, but also show that the stability persists to smaller vortex sizes. The
reason why decayinig=2 modes were obtained by Briggs, Daugherty, and L@hys. Fluidsl3, 421(1970]
using eigenanalysis is also discussgsil063-651X99)08908-4

PACS numbgs): 47.15.Ki, 47.20-k, 52.25.Wz

[. INTRODUCTION the observation of fluid trapping in the diocotron mode at
large amplitudes. In another experiment with a pure electron
The two-dimensional2D) incompressible Euler equation plasma[5], beat-wave resonance dampittcansitions from
high | modes to loml mode$ was observed to be the domi-
Jw nant vortex symmetrization mechanism.
— T(uV)w=0 1) A stability argument based on global constraints has also
been applied to the 2D vortex systd@]. The logic of this

. . . , . analysis is to show that a function@l] »(r)] which is con-
not only describes an incompressible 2D ideal fluid, but alsqgneq by the 2D Euler equation is a maximum at a particular

governs the behavior of a long non-neutral plasma column, ;) against all other states that are accessible under incom-
confined by a uniform axial magnetic fied]. Here,u(x,y)  pressible flows. At this maximum, no further changes in
is the 2D velocity field ando(r) the vorticity field, o=(V (1) are possible and the state is then stable. For example,
X u) - z. The incompressibility conditior¥V - u=0, can be au-  Davidson and Lund7] showed that a state in a cylindrical
tomatically satisfied by defining the stream functigrsuch  geometry following a relation w(r)=w(¢(r)) and
asu=(d¢ldy,—d¢lix). The stream function and vorticity gw(¢)/94$=0 is nonlinearly stabl¢8]. In another example,
are related by the Poisson equatii¢=—w. In a pure  O’Neil and Smith[9] demonstrated that an off-center coher-
electron plasmaw corresponds to the electron density afid  ent vortex (linearly anl=1 perturbatioh in a disk is also
to the electrical potential. stable. However, no results on the stability oflan2 mode
Stability problems of coherent vortex states in this systenysing this method have been given in the literature.
have long been interesting and important questions. In a free Thermal equilibrium has been studied in 2D ideal fluids
space, there exist exact nonlinear ellipti¢kirchoff) uni-  [10]. Since the coarse-grained entropy will not decrease due
form vorticity solutions [2]. In a cylindrical geometry, to the dynamical vorticity mixing, it is proposed that the
Briggs, Daugherty, and Levj8] showed that, using dynami- system will reach a maximum coarse-grained entropy state at
cal eigenanalysis, resonance between fluid elements anghg time. Mean field equations governing these states have
wave modes will lead to damping &2 diocotron modes. been derived10], and solutions in some situations were ob-
Here,| denotes the mode number when the perturbation to gained[11]. Once a mean-field equilibrium state is obtained,
symmetric stream function is written as(r)exdi(Qt—I6)].  its stability can be assured by showing a positive second
By solving the initial value problem of linearized dynamical derivative of entropy against all possible perturbations. This
equations and properly treating analytical continuation in theest of stability is similar to the method mentioned in the
complex( plane, they obtained a formulation for the com- preceding paragraph.
plex eigenvalue. In particular, for a vorticity distribution In this paper we will establish the stability of a large
very close to a step functiofi.e., w(r<rg)=1 and w(r elliptical vortex in a diskcomparing to the disk sizegainst
>r)=0] but with negative radial derivative at all placés, relaxation to a symmetrical state using neither of the above
with a positive imaginary part is calculated flor 2, leading  two methods with eigenanalysis and global maximum. The
to decaying normal modes. apparent contradiction between these results and those ob-
Experimental observations of decayilig 2 modes have tained by Briggs, Daugherty, and Le{$] will be indicated
been performed by Pillai and Gou[d] in a pure electron due to the limitation of monotonic decreasing profiles in that
plasma. Exponential decay rates were obtained, as well gmper. We will first deduce a stable sufficient condition from
the conservation law of the Euler equation and the property
of dynamical vorticity mixing. The energy of uniform vor-
*Electronic address: peilong@toast.phy.ncu.edu.tw ticity will then be calculatedanalytically at the small ellip-
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ticity limit and numerically for general caseand the vorti-
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It should be noted here that this condition only attempts to

ces larger than a critical radius are shown to be stable froraxclude symmetrical states from possible evolutions, a limi-
the comparison of energy. Testing the condition does notation purely physically motivated. For example, it seems
involve evaluating second derivatives, actually not everunlikely that an ellipse at the disk center will break the sym-

finding any equilibrium states. For smoothly distributed el-

metry and relax to an off-center vortex, although we believe

liptical vortices, an approximating method is used and thehat the energy stability condition will not prohibit this dy-

results also suggest the existence of stable nonuniform e
lipses. The robustness of these results under a small viscosi

framics. This conjectur@ot decaying to off-center stabeis
tpnsistent with numerical simulations in the tested parameter

is also discussed. We further perform numerical simulationsanges which will be discussed in Sec. VI.
of the 2D Euler equation to test our predictions. Simulations

not only confirm the sufficient condition, but also show that
elliptical vortices are stable to much lower radii.

Il. THE STABILITY CONDITION

The stability condition used here can be summarized a
follows. For an elliptical vortex at the center of a unit disk, if
all possible symmetrical distributions obeying the global
constraints(except energyrequired by the Euler equation

have energy less than that of the initial ellipse, this ellipse

will never evolve to a symmetrical state.

Specifically, let us first consider a uniform-vorticity ellip-
tical vortex with unit vorticity level sitting at the disk center.
(Generalization to nonuniform vortices will be discussed
later) Now consider its possible dynamics toward an axis
symmetrical vortex. This will be a state with a lindlar 2
diocotron mode if the vortex has an infinitesimal ellipticity.

The Euler equation conserves the total vorticityangu-
lar momentumM, and energyE of the initial ellipse (the
global constraints which are given by

QZJw(r)df. M=fr2w(r)dr.

1
Ee_if d(r)w(r)dr.

Furthermore, dynamical vorticity mixing ensures that the
vorticity level of the resulting symmetrical vortex will never
exceed ondthe original uniform valug Under this restric-
tion and giverQ andM from the initial ellipse, there must be
a maximum energy state with its energy denotedEas

among all possible symmetrical distributions. Requiring con-

servation of energy, the condition then immediately follows:

E.<E; is necessary for the ellipse to ever evolve to a sym-

metrical vortex;E.>E; is the sufficient conditionfor the
ellipsenot evolving to a symmetrical state. Applied to infini-
tesimal ellipticity, thel =2 diocotron mode will not decay
whenE >E;.

For general nonuniform vortices, first let us defi@éo)
as the area covered by vorticity larger and equako

G(o)= fvs(w(l’) —o)dr,

with s(o) the usual step function. Now dynamical vorticity
mixing requires the inequality betwed&d.(o) of the initial
ellipse and Gg4(o) of the evolved symmetrical profile:
Ge(0)=G4(0). Note that in the special case of uniform vor-
ticity, this inequality is simplified to the previous statement
about the vorticity not exceeding 1.

Ill. SMALL ELLIPTICITY FOR UNIFORM VORTICES

Naturally we first want to examine the energy of uniform
elliptical vortices, because of their large energy giving a bet-
ter chance to satisfy the stability condition and the possible
benefit on calculation due to their uniformness. We take a
uniform elliptical vortex as a vorticity distributiow(r) in
the polar coordinater(6),

@

with s(x) again the step function. The paramatgdefines a
base vortex size anelits ellipticity. The energy of this vor-
tex in a unit disk can be written down using the Green func-
tion in a disk for the Poisson equatioW2G(r;r')=— &(r
—r'), with zero boundary condition at=1. Using an
opposite-charged image charge sittingr'ae (1/r',6'), the
Green function can be written a&(r;r’')=—1/2z(In|r
—r'|=Injr—r"|—=Inr’"). The last term Im’ is needed to give
zero potential at =1. The energy of the uniform elliptical
vortex is then

we(r,0;ry,€)=1—s(r—ry(1+ ecos 29)),

1
Ee<ro,e):§J () w(r)dr
1 (2= ro(1+e cos 29)
=—J daf rdr
2Jo 0
2m ro(1+ecos 29")
X de’ r'dr’'G(r;r’)
0 0
27 ro(1+ € cos 29)
:E0+J daf rdr ¢o(r;ro)
0 ro

1 (2= ro(1+ € cos 20) 2m
+ —J daJ rdr do’
2 0 ro 0

% Jr0(1+ ecos20')
r

0

r'dr’'G(r;r’). (©)]
We separatéd=,, into three terms in the preceding equation.
Here ¢y(r;rg) is the stream function of a uniform circular
vortex with radiusrg, (1/r)(d/dr)(r(d¢g/dr))=— wg,
wo(r;rg)=1—s(r—rgy), andE, its corresponding energy,

16

1
—Zlnro+

1
Eozzf do(r;ro)wo(r;ro)2mrdr=arg

We know of no way to integrate E@3) analytically. How-
ever, in this section we will calculate analytically the leading
term in a smalle expansion ofE.(rq,€), which is directly
related to the linear stability of dr=2 diocotron mode, and



1750 PEILONG

CHEN PRE 60

in the next section we will present exact numerical results of-r3)e?, and the energ¥, is expanded aét involves only

Ec(rg,€) with arbitrary e. Since the vortex is defined by
ro(1+ € cos %), the lowest order dependence ermust be
€. Correct to the order oé?, the second term in Ed3) is
quickly found to be

27]
f SLrodo(roiro)+ do(ro;ro)Irge’ cos 260d6
0

1
47-rrg(1+ln Fo) €.

Here the prime denotes the derivative respected Evalu-
ation of the third term in Eq(3) is more difficult. Again
correct to the order oé?, the integration becomes
1 27
réeZJ dé
0

2m

> de’' cos20cos20'G(rq,0;rqg,60").
0

Using the Green function and changing to new variabies
=0+6" andv=60—0’', after some algebra, we reach

1
4 2
_rof

2w
5 7T+J In(a—cosv)cos Avdv |=1,, (4)
0

with a=3(r3+1/3)=1. The integration I,=/2"In(1
—cosv)cos dv=—1 has also been used in reaching Eq.
(4).

The integration in Eq(4) is computed by first integrating
dl 4/9a, and then usingd, to determine the constant arising
from integration ofa. Eventually Eq.(4) is found to be
$mra(1—-rg)€?, and the energy of the elliptical vortex be-
comes

4

2

5 Inry| €2+ 0(e%).

©)

The energyE(rg,€) is now to be compared with the

Ee(rg,€)=Eq+ —mrg| — =rg—

straightforward algebra to soluwgg and then integrat&,)

1

4

1-3r3
mrg——>INroe?+0(e*).

Now we obtain the energy difference betwdenandEg as

w 1, 1 2§
Ee—ES=Zré —Eré—z—l_ﬁfolnro 62+O(64).

Evaluation of thee? term reveals that there is a critical value
of ry atr.=0.586 such thaE.<Eg for ro<r, andE.>Eq
forro>re.

So applying the energy condition, this indicates that the
=2 mode perturbation of a uniform circular vortex in a
finite disk will not decay if the vortex is large enoudharger
than 0.586 times the disk radiusrhis result seems to con-
tradict that of Briggs, Daugherty, and Ley$], where de-
caying modes were calculated from eigenanalysis fol all
=2 modes of a circular vortex with a smooth profile very
close towy(r;rp) (a step at) but with negativew’ (r) at all
r. The resolution is that in the calculation of Briggs, Daugh-
erty, and Levy, the symmetrical vortex is assumed as a
monotonic decreasing function of This seems a reasonable
and harmless condition. However, as E).shows, this con-
dition is very restrictive and always violated by uniform el-
lipses and hence their results no longer apply.

IV. UNIFORM VORTICES WITH ARBITRARY
ELLIPTICITY

In this section we treat general ellipticity cases by com-
puting numerically the energy of uniform vortices defined by
Eq. (2) with arbitrary e. Let us first consider the possible
effects at a large ellipticity. Wheaincreases at a fixed, in
Eq. (2), the energy will decrease at the same time the angular
momentum rises. Larger angular momentum also results in a

energy E of the maximum-energy symmetrical state with smaller energies of the corresponding symmetrical vortex, as

the same values of total vorticit® and angular momentum More vorticity will stay outside. Since bot_h energy are de-

M. Its vorticity must also be equal to or less than 1. To seé&'€asing, we cannot tell before the calculation of exact values

what this state is, first it is favorable to have all the vorticity Whether a larger ellipticity will make the energy condition

stay together, i.e., a uniform unit-valued circular vortex withmore easily satisfied or not. _ o

radiusrs=(Q/m)*2 to gain as much as energy. However, 10 numerically calculateEy(rg,e) of uniform elliptical

this circular vortex has a fixed angular momentdrmr® vortices with arbitrarye, we use another form of the Green
S . . . . . .

and the uniform ellipse always has a larger value. To satisfjunction since that using image charges in the preceding sec-

the requirement of botl® and M, as well as achieving a ion has logarithmic functions and is not easy to handle nu-
maximum energy, the vorticity di’stributiom (r) will be merically. The Green function is now written as a summation
[l S

of Fourier components in the azimuthal direction,
1

0

o<r<a
a<<r<p.

for and pB<r<1

(6)

wy(r)=
o for G(rir)= 2 gm(r;r")cogm(6—6")],

e
Herea and B depend orQQ andM, which are determined by
ro ande. In this profile, a certain amount of vorticity is put with g,, functions of bothr =™ andr’=™. The energy now
as far away from center as possible, i.e., at the disk boundsecomes a summation emof four-dimensional ,6,r",6")
ary, to account for the excess angular momentum, and mtegrals. The integration on and r’ can be carried out
maximum amount of vorticity is left to concentrate at the analytically and the energy simplifies to a summation of
center to acquire a maximum enerid?]. Here we see how double integrals org and #’. The integrals are then calcu-
the system size comes into play in a delicate manner. Alated numerically, and results are checked to conform to Eq.

small e, a=r[1+3(1-3r5/1-r3)e?] and B=1—3(ri/1  (5) at smalle.
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' be very large at a small viscosity comparing to the time scale
of inviscid processes. What we are interested in here is the
_ dynamical behaviors in these rapid inviscid processes and
uniform the presence of a small viscosity should not have large ef-
fects. This separation of time scale is well documented in
05 | : . h . .
various experiments and simulatiofk3] and could also be
seen in our simulation&Sec. V).
w 05 & x X V. NONUNIFORM VORTICITY ELLIPSES
¢ X In the previous sections the energy of both uniform ellip-
¢ X X tical and symmetrical vortices is calculated to obtain the
e X X stable critical radii. We now want to discuss elliptical vorti-
ces with smoothly distributed vorticity. Consider the situa-
. . i tion when the edge of a uniform vortex becomes smeared;
0.0 - the energy should change gradudihpt discrete jumpwith
0.0 0.0 the degree of “smoothness.” Thus we should be able to say
04 0.5 0.6 that smoothly distributed ellipses close to uniform vortices

Iy still have stable critical radii. To quantitatively compute the
critical radii now, however, is not easy, and it is not clear
FIG. 1. The vortex size and ellipticity space. The thick line is whether smooth vortices far away from uniform could re-
the stable critical radius for uniform vortices. The thin lines are formain stable. The energy of nonuniform, smoothly distributed
smooth vortices withc=100, 30, and 15, and calculated by con- ellipses(which we will define as some particular distribu-
servingZ,. In the inset, crosses represent relaxations to ellipticakjong) is actually easier to compute numerically than the uni-
states in Simulations, and circles to Symmetrical states. form cases by using a two-dimensional gr|d with enough gr|d
points. However, the energy of the corresponding maximum-
The exact value 0E(ry,€) now enables us to establish energy symmetrical profiles is very difficult to obtain, as
the stability of finite ellipticity at uniform vorticity. In Fig. 1  there is this functional constrai@( o). Hence in this section
of ther,-€ plane, we plot a thick line indicating the position We Will only present an approximating method to test the
whereE,=E;. (Although complicated, agai with arbi-  stability condition. The purpose of this calculation is then to
trarye can be written down ana|ytica||y from Straightforward demonstrate that there should still be stable smooth elllptlcal
algebra) To the right of the lineE,>E and an elliptical ~ vortices, not to obtain exact valueg of the c_ritical radii.
vortex will never relax to a symmetrical vortex. The curve ~ Theé maximum-energy symmetrical profiles now should
crosses=0 atr,=0.586, the value we have obtained from have the sam&(o) as the initial ellipse. In real implemen-
the smalle expansion. As is increased, the critical radius tation, we can require the quantiti&s ,n=1,2,3 ..., de-
whereE,=E, becomes smaller, indicating a stronger effectfined by
from increasing angular momentum than decreasing energy.
To the left, the present analysis only says that the decay to a _ n
symmetric state is allowed, but its occurrence is not implied. 2= va (rdr,
It should be emphasized here that we have proved that the

ellipse defined by Eq(2) will not decay to a symmetrical to be conserved. In the special case of uniform ellipses, the

Ztate 'fr3_> rtc' It ;S vgry I'kﬁly thal‘lt_ (13_/”6'"?;(%”{ It dWIIItu'?- WS mmetrical states are also uniform, as we have done in the
€rgo adjustmentand reach an efliptical-like steady state. gr/evious sections. For the general case, however, it becomes

cannot say about its exact distribution. It probably should b highly nontrivial task to find this maximum-energy state.

a sta;e_ described by(r)—w[¢(r)+ﬂr 1, with ZQ'gng We use the smooth elliptical vortices defined in the polar
the rigid body rotation frequency around the disk center..oordinate by

Given a particular assumption on this functional dependence,
an exact distribution can then be computed. One example is

the mean field equilibriuri10]. However, whether and when w(r)= ! _ )
the system will reach the prediction from this maximum- 1+exp{c[r—ro(1+ecos29)]}

entropy principle(thermal equilibriumis still not very clear

[14]. Here againr, gives a base vortex size, its ellipticity [cf.

We should have some discussions here about the effect &q. (2)], andc the smoothness near the edge. In Fig. 2, we
viscosity, which is always present in real physical situationsshow w(r;r,=0.5e=0) with three different values ot
on the elliptical vortices. Ignoring the issues of all other(100, 30, 15.
quantities, the system energy will gradually decrease due to The energy of these vortices is calculated using a polar
the viscous dissipation and an original stable ellipse with artoordinate grid inside a unit circle. The Poisson equation,
energy larger tharkEg could hence relax to a symmetrical V24=— w, is solved by Fourier expansion in the azimuthal
state after its energy falls belo&,. However, the finite direction. Radial equations are thus decoupled for different
difference between the initidk, and the symmetricakEg Fourier modes and they are solved by a fourth-order finite
makes this happen in a viscous time scale which is going tdifference method. Calculations in various numbers of grid
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' hint at the existence of critical radii for stable ellipses at
. some places. Especially at largethey are almost approach-
ing a single curve. The reason we believe this is as follows.
A significant portion of the increased angular momentum at
small e should be accounted for by adjusting the vorticity
distribution near the edge and this adjustment is strongly
affected by the particular choice of constraiiyf. Hence
different critical radii in Fig. 3 at smak. However, at large

€, most of the excess angular momentum must be achieved
by putting enough vorticity at the disk boundary, as in the
previous uniform case. The adaption is largely determined by
Q andM, leading to a single curve for differedt, at largee.

In Fig. 1, we plot three additional thin lines marking the
critical radii calculated forc equal to 100, 30, and 15, with
Z, as the choice of constraint. These thin lines calculated
1.0 from the above approximation we believe suggest that large
smooth elliptical vortices are also stable, like the stable uni-
form ellipses we have proven in the previous sections. Dif-
ferent choices ofZ,, gives qualitatively similar results. Fi-
nally, we note that at=15 the behavior very close te

pointS are done to make sure enough accuracy is achie\/eff_o seems to indicate that linear eIIipticaI vortices will not

1.0

0.0
0.0

FIG. 2. Plot of vorticity distribution Eq(7) with ry=0.5, €
=0, and three different values of

That usually means up to the grid of 1022024, satisfy the stability condition. However, we should bear in
We then use the following distribution to approximate themind the approximating nature of the calculations for these
corresponding symmetrical state: thin lines.
1 1 VI. NUMERICAL SIMULATIONS
o(r)= - + - . (8
1+exdc'(r—a)] 1+exgc'(B-r)] We have performed numerical simulations to test our pre-

. . . . " ) dictions. Simulations of the Euler equation in the polar co-
This form is motivated by Eq6) with additional smoothing  ginate have the difficulty of singularity at the origin due to

controlled byc’. With three parametersy(3,c’), this equa- vanishing grid spacing. To avoid this singularity, we use the
tion can satisfy, beside@ andM, only a particular choice of  ,nctions

Z, from the initial elliptical vortex, as oppose to &l, as

required by the exact stability condition. So results thus cal- x= u1—72/2

culated should be treated cautiously. H &z,
Nevertheless, in Fig. 3 we show the calculated critical

o y=(I-w7P2,

radii for c=100 with several differenZ, as the constraint.
The curves are again obtained by comparison between the . oo .
energy of states from Eqé7) and(8) and mark where these mapping a unit disk in the-y plane to a sguare in th,eg
two energy are equal. Although different choicesZgfgive plane W'th._lg'“gl and B l<¢<1. The S|mullat|on IS
different curves of critical radii, we believe they nonethelessthen d(_)ne n the:-{ plane with a Cartesian coordinate. The
resolution is mostly 258 256, with a few 51X 512 runs to
08 . test convergence. By avoiding the polar coordinate and
hence the singularity at the origin, we need only a very small
numerical viscosity termyVZ2w, to stabilize the simulation.
The viscous time scale hence becomes very large and our
1 results of inviscid relaxation behaviors can then be indepen-
dent of the viscosity. The second-order finite difference is
used for spatial derivatives. Temporally the second-order ex-
plicit Adams-Bashford scheme is used for the nonlinear term
and the fully implicit scheme is used for the viscous term.
Distributions defined by Eq.7) with c=30 are used as
our initial conditions. For an initial ellipse with particular
i values ofry and e, we run simulations to a long time and
determine whether their final states are elliptical or sym-
metrical. The results are plotted in the inset of Fig. 1 as
symbols, where crosses indicate relaxation to elliptical states
0-%'50 0_\135 o.éo 0.65 and solid circles to symmetrical states. There are no results at
r very smalle as very high resolutions are needed to resolve
differences between elliptical major and minor axes at this
FIG. 3. Critical radii for smooth vortices witb=100 and using  limit. In the figure we see the confirmation of the predictions
differentZ,, as the constraints. from the stability condition, namely the stable elliptical vor-

0.6 |

w 04}

02 |
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tices with large vortex sizes. We note that no relaxations teervation, large elliptical vortices in a finite disk will remain
off-center vortices have happened. stable. At the infinitesimal ellipticity limit, this indicates
The simulations also show that ellipses are actually stabletablel =2 diocotron modes for large vortices. The critical
to lower radii. This can be reasonably explained by the dy+adii for uniform vortices is rigorously computed. The exis-
namical behavior of the ellipses observed in the simulationstence of stable smooth vortices are also suggested by an ap-
Generically, an initial ellipse will shed some vorticity in the proximating calculation. Numerical simulations not only
form of vorticity filaments toward the disk boundary and the confirmed these results, but also show that elliptical states
center vortex either reaches a distribution with a smaller elare actually stable to a smaller size. The contradiction to the
lipticity or becomes symmetric. However, these filamentscurrent general idea of decayihg 2 modes is also indicated
seldom really reach the disk boundary, as opposed to thdue to the incompleteness of considering only monotonic
extreme situation at the calculation of the energy of thedecreasing vorticity by Briggs, Daugherty, and Levy.
maximum-energy symmetrical state. In other words, these
filaments do not carry away the maximum possible angular ACKNOWLEDGMENTS

momentum, leading to elliptical vortices at the center. _ _ _
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